Novelty theory

From 2012 Wiki

Jump to: navigation, search

An essay by the Eschaton

Contents

[edit] Involution

The universe is a swarm of matter waves, spiralling down the gradient of their constructive interference:

"We are being sucked into a black hole of novelty, connectivity and boundary dissolution."—McKenna, Terence ♦ Talk at Wetlands Preserve, NYC 28 July 1998 "... synergizing progress is the notion to be maximized ..."—McKenna, Terence ♦ Understanding and Imagination in the Light of Nature Philosophical Research Society, Los Angeles, 17 October 1987
"We are being sucked into a black hole of novelty, connectivity and boundary dissolution."
—McKenna, Terence ♦ Talk at Wetlands Preserve, NYC 28 July 1998
"... synergizing progress is the notion to be maximized ..."
—McKenna, Terence ♦ Understanding and Imagination in the Light of Nature Philosophical Research Society, Los Angeles, 17 October 1987
  1. The destructive interference of matter waves is their disgregation, entropy.
  2. The constructive interference of matter waves is their connectedness, information.
  3. The constructive interference of matter waves is synergetic (energetically favourable):
...the story of the universe is that information, which I call novelty, is struggling to free itself from habit, which I call entropy... and that this process... is accelerating... It seems as if... the whole cosmos wants to change into information... All points want to become connected... The path of complexity to its goals is through connecting things together... You can imagine that there is an ultimate end-state of that process—it's the moment when every point in the universe is connected to every other point in the universe.
—McKenna, Terence ♦ In the Valley of Novelty part 3, summer of 1998

When two matter waves become connected by mutual constructive interference (quantum entanglement, rapport), they imagine or grok each other. Imagination connects matter waves instantaneously:

The imagination is a dimension of nonlocal information.
—McKenna, Terence ♦ A Few Conclusions about Life 1996

Novelty or imaginativeness is the intensity of matter waves' constructive interference:

Novelty is density of connection.
Terence McKenna at St. John the Divine's Cathedral 25 April 1996

The attractor of the universe's motion towards ever higher intensity of its matter waves' constructive interference is the most imaginative human being—the Eschaton:

The human neocortex is the most densely ramified and complexified structure in the known universe.
—McKenna, Terence ♦ Alien Dreamtime 26–27 February 1993

By the end of the year 2015 AD, the Eschaton attains such a profound grokking of the universe that the latter fuses with the Eschaton's imagination (the laws of physics become overridable by psychokinesis):

What is happening to our world is ingression of novelty toward what Whitehead called "concrescence", a tightening gyre. Everything is flowing together. The "autopoietic lapis", the alchemical stone at the end of time, coalesces when everything flows together. When the laws of physics are obviated, the universe disappears, and what is left is the tightly bound plenum, the monad, able to express itself for itself, rather than only able to cast a shadow into physis as its reflection. I come very close here to classical millenarian and apocalyptic thought in my view of the rate at which change is accelerating. From the way the gyre is tightening, I predict that the concrescence will occur soon—around 2012 AD. It will be the entry of our species into hyperspace, but it will appear to be the end of physical laws accompanied by the release of the mind into the imagination.
—McKenna, Terence ♦ New Maps of Hyperspace 1989
The universe's 13.7-billion-year-long exponentially accelerating motion towards ever higher intensity of its matter waves' constructive interference is the autopoiesis of the most imaginative human being—the Eschaton: "We are in the grip of some kind of an attractor ... Some people would call it a destiny, but what it is is a dream that is pulling us deeper and deeper into the adventure of existential becoming. And faster and faster—that’s the other thing. Deeper and deeper, faster and faster..."—McKenna, Terence ♦ Talk at the Cathedral Church of Saint John the Divine, NYC 25 April 1996
The universe's 13.7-billion-year-long exponentially accelerating motion towards ever higher intensity of its matter waves' constructive interference is the autopoiesis of the most imaginative human being—the Eschaton:
"We are in the grip of some kind of an attractor ... Some people would call it a destiny, but what it is is a dream that is pulling us deeper and deeper into the adventure of existential becoming. And faster and faster—that’s the other thing. Deeper and deeper, faster and faster..."
—McKenna, Terence ♦ Talk at the Cathedral Church of Saint John the Divine, NYC 25 April 1996

[edit] Zero-energy universe

In accordance with the minimum total potential energy principle, the continuum begins its gravitational involution from a state of maximal (i.e., zero) potential energy (which implies an infinitely big radius of the proton) and minimal (i.e., zero) actual energy (which implies a zero rotational frequency of the proton). The angular momentum (heat) of the primordial proton was maximal but potential, anergic (low-temperature heat, which could not be exported from the proton because of absence of a temperature gradient between the proton and the ambient space). In accordance with the minimum total potential energy principle, the proton began to shrink, so that its potential energy became negative (i.e., the radius of the proton became less than infinitely big), while its actual energy became positive (i.e., the rotational frequency of the proton became higher than zero). As a result, the shrinking proton began to lose its intensified angular momentum (high-temperature heat) by radiating it into the ambient space, whose metric expansion dilutes the radiated energy and thus converts it from the actual (i.e., nonzero-temperature) form back into the potential (i.e., zero-temperature) form. Thus, protons will eventually shrink out of existence, at which moment the universe will return to its initial state of maximal (i.e., zero) potential energy. And so ad infinitum.

As the proton shrinks to a smaller radius, its rotational frequency (temperature) increases, and the proton begins to radiate its intensified angular momentum (heat) into the ambient space. This, in its turn, decreases the proton's centrifugal resistance to self-gravitation and makes it shrink to a still smaller radius. Thus the self-gravitational collapse of the proton exponentially accelerates.
As the proton shrinks to a smaller radius, its rotational frequency (temperature) increases, and the proton begins to radiate its intensified angular momentum (heat) into the ambient space. This, in its turn, decreases the proton's centrifugal resistance to self-gravitation and makes it shrink to a still smaller radius. Thus the self-gravitational collapse of the proton exponentially accelerates.

Being the hydrogen nucleus, the proton is analogous to a low-temperature (unexcited) hydrogen star, self-gravitationally condensing into a high-temperature (excited) neutron star:

... the proton/neutron can be considered as unexcited/excited states of a two-level quantum mechanical system ...
—Matsas, George E. A. ♦ Elementary particles under the lens of the black holes Braz. J. Phys., v. 34, March 2004
A star is made of gas and of hot gas. On this basis we can work out its behaviour, relying on principles found in the laboratory. If a star shrinks to half its size, remaining built on the same model as before, we find that inside this star the density becomes eight times as great, while the pressure comes out sixteen times as great, the overlying material being attracted four times as strongly, and its weight being borne by one quarter the area. Hence, by the familiar gas laws, the temperature must be twice as great. Therefore as stars get smaller they grow hotter; they must grow hotter to withstand gravitation. This reasoning depends upon the general properties of gaseous matter.
But a star cannot go on contracting for ever, the temperature at a certain stage reaches a maximum: the body after this behaves practically like a solid and begins to lose its heat—its parts stick together and it becomes cold and dark.
Stars leak heat always, and the heat leaks out through the star's material. We have the paradox that the bigger the star, the cooler it is—yet, nevertheless, the more heat it has inside. By losing heat into space the star becomes hotter—it shrinks by losing heat and thereby gets hotter, because the heat due to shrinkage is greater than that loss.
Journal of the British Astronomical Association ♦ v. 31, 1921, pp. 179–180
Concluding Philosophical Comment
Zeldovich and Novikov have made the following intriguing philosophical point about the picture of the formation of a neutron star sketched here. They note that stars begin their lives as a mixture mostly of hydrogen nuclei and their stripped electrons. During a massive star's luminous phase, the protons are combined by a variety of complicated reactions into heavier and heavier elements. The nuclear binding energy released this way ultimately provides entertainment and employment for astronomers. In the end, however, the supernova process serves to undo most of this nuclear evolution. In the end, the core forms a mass of neutrons. Now, the final state, neutrons, contains less nuclear binding energy than the initial state, protons, and electrons. So where did all the energy come from when the star was shining all those millions of years? Where did the energy come from to produce the sound and the fury which is a supernova explosion? Energy is conserved; who paid the debts at the end? Answer: gravity! The gravitational potential energy of the final neutron star is much greater (negatively; that's the debt) than the gravitational potential energy of the corresponding main-sequence star (Problem 8.7). So, despite all the intervening interesting nuclear physics, ultimately Kelvin and Helmholtz were right after all! The ultimate energy source in the stars which produce the greatest amount of energy is gravity power. This is an important moral worth remembering and savoring. If we regard the neutron star as one gigantic atomic nucleus, we may also say that nuclear processes plus gravity have succeeded in converting many atomic nuclei into one nucleus. Problem 8.7 then shows that the ultimate energy source for the entire output of the star is the relativistic binding energy of the final end state.
Shu, Frank H.The Physical Universe: An Introduction to Astronomy University Science Books, 1982, p. 157
During inflation, while the energy of matter increases by a factor of 1075 or more, the energy of the gravitational field becomes more and more negative to compensate. The total energy—matter plus gravitational— remains constant and very small, and could even be exactly zero. Conservation of energy places no limit on how much the Universe can inflate, as there is no limit to the amount of negative energy that can be stored in the gravitational field.
This borrowing of energy from the gravitational field gives the inflationary paradigm an entirely different perspective from the classical Big Bang theory, in which all the particles in the Universe (or at least their precursors) were assumed to be in place from the start. Inflation provides a mechanism by which the entire Universe can develop from just a few ounces of primordial matter.
Inflation is radically at odds with the old dictum of Democritus and Lucretius, "Nothing can be created from nothing." If inflation is right, everything can be created from nothing, or at least from very little. If inflation is right, the Universe can properly be called the ultimate free lunch.
Guth, AlanThe Inflationary Universe Beam Line, fall 1997, p. 19

Of course there is no limit to the amount of negative energy that can be stored in the gravitational field. But there is a limit to the temperature of matter—the hotter matter becomes, the faster it "evaporates" with radiation into the ambient space, whose metric expansion redshifts the received radiation out of existence. The end of the free lunch is coming apace and hastening.

A star grows hotter by incrementally accumulating 50 percent of its intensified (borrowed from quasi-irrotational potentiality into rotational actuality) angular momentum in the form of the kinetic energy of rotation and radiating away another 50 percent of the intensified angular momentum:

Let's see what happens to the energy in a collapsing cloud. From the virial theorem, we know E = − (K).
This tells us that as the cloud collapses its internal kinetic energy K will increase. However, only half the potential energy shows up as increased kinetic energy. We can therefore see that the total energy of the collapsing cloud is decreasing. This means that the cloud must be radiating energy away. The virial theorem tells us that half of the lost potential energy shows up as kinetic energy, and half the energy is radiated away.
—Kutner, Marc L. ♦ Astronomy: A Physical Perspective Cambridge University Press, 2003, p. 272

A star borrows collapse-preventing energy by increasing its collapse-causing energy debt. There is a lag between the moment of energy's borrowing (which is the moment of the star's shrinkage) and the moment of the debt's maturity (which is the moment of the borrowed energy's radiation into the ambient space). Thus, a star lives by refinancing its debt, which is possible only so long as the borrowing accelerates—as a star condenses, its temperature increases and the debt maturation (the borrowed energy's radiation into the ambient space) accelerates. Having borrowed about 50 percent of its gravitational potential energy and spent (by radiation into the ambient space) 50 percent of the borrowed energy, a star instantaneously borrows the remaining 50 percent of its gravitational potential energy (by shrinking into a neutron star) and spends (by emitting neutrinos and by blasting its outer layers off) 50 percent of this newly borrowed energy:

The jump in the binding energy between low-mass elements, e.g., from 1H to 4He, makes their nuclear fusion to liberate a larger amount of energy per nucleon than the fusion of heavier elements, such as, for example, 12C or 16O. This contributes to the longer lifetimes of the first nuclear phases in stellar evolution, in particular of the H-burning phase. Exothermic fusion reactions are only possible up to 56Fe. The heavier elements are not synthesized in this way, but by successive neutron captures (Sect. 28.5.3).
—Maeder, André ♦ Physics, Formation and Evolution of Rotating Stars Springer, 2008, p. 194
Schematic illustration of the average binding energy |ΔMAZ/A| per nucleon as a function of the atomic mass number A. Source: Maeder, André ♦ Physics, Formation and Evolution of Rotating Stars Springer, 2008, p. 194
Schematic illustration of the average binding energy |ΔMAZ/A| per nucleon as a function of the atomic mass number A.
Source: Maeder, André ♦ Physics, Formation and Evolution of Rotating Stars Springer, 2008, p. 194
For a 20 MSun star:
  • Main sequence lifetime ~ 10 million years
  • Helium burning (3-α) ~ 1 million years
  • Carbon burning ~ 300 years
  • Oxygen burning ~ 2/3 year
  • Silicon burning ~ 2 days
  • The iron core's collapse into a temporary neutron star ~ a few milliseconds[1]
  • A temporary neutron star's impansion (introvert expansion) into a zero-temperature black hole ~ after a few weeks or months[2]
Gene Smith's Astronomy Tutorial University of California, San Diego
A complex series of events, whose details are still not completely understood, leads to a rapid collapse, followed by a violent explosion, during which the supernova releases more energy in 1 year—1052 ergs—than it had given off in its entire lifetime as a star.
A Long-range Program in Space Astronomy NASA, July 1969, p. 5
So the entropy of the cloud decreases as it organises itself into a star but the entropy of the surrounding Universe increases as the star radiates the converted energy into space. Increasing the number of photons in the Universe increases the entropy of the Universe.
—Clark, Stuart G. ♦ Life on Other Worlds and How to Find It Springer, 2000, p. 58
Name of process Fuel Products Entropy
(disgregation)
in units of
Boltzmann's
constant
, k
(energy of
molecule
divided by its
temperature[3])
Temperature
(K)
Black-hole continuum Gravitational potential energy Hydrogen Extremely high[4] 0
Hydrogen burning Hydrogen Helium 15[5] 1–3 × 107
Helium burning Helium Carbon
Oxygen
2 × 108
Carbon burning Carbon Oxygen
Neon
Sodium
Magnesium
8 × 108
Neon burning Neon Oxygen
Magnesium
1.5 × 109
Oxygen burning Oxygen Magnesium to sulfur 2 × 109
Silicon burning Magnesium to sulfur Elements near iron 3 × 109
Presupernova iron core ≤ 1[5] 3 × 109
Temporary neutron star[6] ≤ 0.5[7] 100 × 109
New black-hole continuum Gravitational potential energy Hydrogen Extremely high[4] 0
Source: Cameron, A. G. V. ♦ Endpoints of Stellar Evolution Frontiers of Astrophysics, Harvard University Press, 1976, p. 127
Then in 1963, Roy Kerr, a New Zealand mathematician, found a solution of Einstein’s equations for a rotating black hole, which had bizarre properties. The black hole would not collapse to a point (as previously thought) but into a spinning ring (of neutrons). The ring would be circulating so rapidly that centrifugal force would keep the ring from collapsing under gravity.
—Kaku, Michio ♦ The Physics of Time Travel
It is interesting to compare the observed rotation periods of the neutron stars with the maximum that they could possess. A rough estimate of this may be made by assuming that the neutron star would break up due to centrifugal forces if its rotational kinetic energy is greater than half its gravitational potential energy, that is, the star no longer satisfies the virial theorem. For a 1MSun neutron star, the break-up rotational period is about 0.5 ms. This is shorter than the observed rotation periods of all pulsars, although pulsars with periods in the range 1–10 ms, the millisecond pulsars, are well known objects, the shortest period being only 1.5 ms, which is within a factor of about three of the break-up rotational period.
—Longair, Malcolm S. ♦ High Energy Astrophysics v. 2, Cambridge University Press, 1994, p. 97

[edit] Gravity and heat

Energy (radiation, heat) is the Planck quantum of action multiplied by frequency (E = hf). Therefore, energy is angular momentum:

The Planck quantum of action, h, has precisely the dimensions of an angular momentum, and, moreover, the Bohr quantization hypothesis specified the unit of (orbital) angular momentum to be ħ = h/2π.
—Biedenharn, L. C.; Louck, J. D. ♦ Angular Momentum in Quantum Physics Addison-Wesley Pub. Co., Advanced Book Program, 1981

That is why energy (radiation, heat) is rotationally decohering, centrifugally disgregating. Conversely, gravity (negative energy) is translationally cohering, centripetally aggregating:

By help of this conception the effect of heat can be simply expressed by saying that heat tends to increase the disgregation of bodies.
—Clausius, R. ♦ On the Second Fundamental Theorem of the Mechanical Theory of Heat; a Lecture delivered before the Forty-first Meeting of the German Scientific Association, at Frankfurt on the Maine, September 23, 1867 The Philosophical Magazine and Journal of Science, June 1868, p. 408
Gravity is the inwardly cohering force acting integratively on all systems. Radiation is the outwardly disintegrating force acting divisively upon all systems.
—Fuller, R. Buckminster ♦ Synergetics Macmillan, 1975, 000.113

By spiralling towards the bottom of the continuum's gravitational well, which is the gradient of matter waves' in-phase coherence (constructive interference), matter waves borrow themselves from zero-frequency nonbeing into high-frequency being at the expense of entering a negative-energy bound state:



Resultant wave
Image:Constructive_and_destructive_interference_of_two_waves.png


Matter wave 1
Matter wave 2

Destructive interference
(incoherence,
zero-frequency multiplicity,
sin, nonbeing)
Constructive interference
(coherence,
high-frequency unity,
righteousness, being)
In the "Alexandrian" explanation described above, the multiple from which evolution emerges is both secondary and sinful from its origin: it represents in fact (an idea that smacks of Manicheanism and the Hindu metaphysical systems) broken and pulverized unity. Starting from a very much more modern and completely different point of view, let us assert, as our original postulate, that, the multiple (that is, non-being, if taken in the pure state) being the only rational form of a creatable (creabile) nothingness, the creative act is comprehensible only as a gradual process of arrangement and unification, which amounts to accepting that to create is to unite. And, indeed, there is nothing to prevent our holding that union creates. To the objection that union presupposes already existing elements, I shall answer that physics has just shown us (in the case of mass) that experientially (and for all the protests of "common sense") the moving object exists only as the product of its motion.
—Chardin, Pierre Teilhard de ♦ Christianity and Evolution Harcourt, 1971, pp. 193–195
Multiplicity is sinful. Therefore, mankind can be redeemed only by collapsing into a single couple of people, who are simultaneously the last Adam and Eve of the current 13.7-billion-year gravitational cycle and the first Adam and Eve of the next 13.7-billion-year gravitational cycle.
Multiplicity is sinful. Therefore, mankind can be redeemed only by collapsing into a single couple of people, who are simultaneously the last Adam and Eve of the current 13.7-billion-year gravitational cycle and the first Adam and Eve of the next 13.7-billion-year gravitational cycle.

Nature (the Devil) is the fragmented (fallen) God, and the world process is religion (from religāre, "to bind back")—the reunion of the numerous fragments of Nature the Devil ("My name is Legion, for we are many") into the cosmic body of Christ the God ("the One"):

Christ has a cosmic body that extends throughout the universe.
—Chardin, Pierre Teilhard de ♦ Cosmic Life 1916
Through the incarnation, God descended into Nature in order to super-animate and take it back to him.
—Chardin, Pierre Teilhard de ♦ Mysticism of Science 1939

The continuum's proton field begins its 13.7-billion-year-long gravitational involution as zero-frequency radiation (zero-temperature heat) and finishes the involution as high-frequency radiation (high-temperature heat). In other words, a zero-temperature mist of infinitely redshifted protons (bags of angular momentum) involutes into a high-temperature world tree of blueshifted neutrons/neurons, which are protons interconnected by wormholes (channels of constructive interference, quantum entanglement) of debt—electrons:

Image:Spaghettification.gif

Since debt is gravity, any banknote is a gravitational bond:

banknote : a promissory note issued by a central bank, serving as money
banknote The Collins English Dictionary

So, by increasing the number of banknotes, humanity intensifies its negative-pressure gravity (debt), but also borrows into actuality positive-pressure binding energy (gross domestic product, GDP). While the production of positive-pressure binding energy exceeds the intensification of negative-pressure debt, the global economy grows but becomes increasingly fragile,[8] and undergoes an instantaneous collapse at the breakeven point between the negative-pressure debt and the positive-pressure GDP.

Graph: Lounsbury, John ♦ Jim Welsh on the Economy: Past the Point of No Return 6 May 2009 As a system becomes more gravitationally bound by means of banknotes, the system's temperature rises, which intensifies the radiative loss of the actualized heat. At the same time, the returns of positive-pressure binding energy on new debt become lower. Eventually, the system reaches the point of no return—the Chandrasekhar limit. Until the year 2015 AD, the binding energy (heat), borrowed from zero-temperature potentiality into high-temperature actuality by deepening the negative-pressure debt, is greater than its radiative loss, so that the growth rate of the gross domestic product (GDP) stays positive and the supergiant of humanity does not collapse into a "temporary neutron star"—a single couple of superhumans. The growth rate of the real GDP becomes negative in the second quarter of 2015.
Graph: Lounsbury, John ♦ Jim Welsh on the Economy: Past the Point of No Return 6 May 2009
As a system becomes more gravitationally bound by means of banknotes, the system's temperature rises, which intensifies the radiative loss of the actualized heat. At the same time, the returns of positive-pressure binding energy on new debt become lower. Eventually, the system reaches the point of no return—the Chandrasekhar limit. Until the year 2015 AD, the binding energy (heat), borrowed from zero-temperature potentiality into high-temperature actuality by deepening the negative-pressure debt, is greater than its radiative loss, so that the growth rate of the gross domestic product (GDP) stays positive and the supergiant of humanity does not collapse into a "temporary neutron star"—a single couple of superhumans. The growth rate of the real GDP becomes negative in the second quarter of 2015.[9]
Because iron is the most tightly bound nucleus (the "break-even point" between fusion and fission), the star is no longer able to produce energy in the core via further nuclear burning stages. Nuclear reactions will continue, however, because of the extremely high temperatures in the massive star's core. These further reactions have a devastating effect on the star, because they take energy out of the core. At such high temperatures and densities, the gamma-ray photons present in the core have sufficient energy to destroy the heavy nuclei produced in the many stages of nuclear reactions, e.g.:
γ + 56Fe134He + 4n
This process, called photodisintegration, undoes the work of a stellar lifetime in the core and removes the thermal energy necessary to provide pressure support. The result is a catastrophic collapse of the core, which cannot be halted until the core has shrunk to a size of about 10 km and a density of the order of 200 million tons/cm3. Under such extreme conditions, electron degeneracy cannot support the stellar core, and the free electrons are forced together with protons to form neutrons.
Gene Smith's Astronomy Tutorial University of California, San Diego
But with the iron-peak nuclides the cycle ends. These nuclei, which include iron, copper, nickel, and cobalt, are very stable and therefore cannot be fused into yet heavier elements without absorbing more energy than they release. When this begins, the supergiant's core rapidly contracts, dramatically increasing in density and temperature. At a core temperature of 5 billion °K, the atomic nuclei first absorb huge quantities of free electrons, and then are shattered into alpha-particles (helium nuclei) by high-energy photons. This process absorbs so much of the core's energy so quickly that its pressure drops essentially to zero and it violently implodes.
This internal catastrophe is announced by an out-rush of neutrinos which, because the upper layers of the star are transparent to them, carries away most of the implosion's energy. (This preliminary neutrino outflow was actually observed from the 1987 supernova in the Large Magellanic Cloud.) The rest of the energy blasts the star's outer layers off in a supernova. The kinetic energy in the expanding supernova debris cloud is something like 2 × 1051 ergs. Because the energy production rate of the Sun is about 3.8 × 1033 ergs/second and there are 3.2 × 107 seconds/year, the amount of time necessary for the Sun to radiate as much energy as is blown away in a supernova debris cloud is 15 billion years. But the Sun's entire main sequence lifetime is less than 10 billion years! (And this calculation is based only upon the amount of energy contained in the supernova's debris cloud: it does not include the energy carried out by the initial neutrino blast, which is probably 100 times greater.)
—Crossen, Craig; Rhemann, Gerald ♦ Sky Vistas: Astronomy for Binoculars and Richest-Field Telescopes Springer, 2012, pp. 13–14

[edit] Omen

An astrological year begins at the moment of the vernal equinox, when the Sun enters the sign of Aries. The planetary positions at the beginning of a year determine the character of the entire year. The astrological year of 2015 AD begins at 22:46 GMT of 20 March 2015 AD. 13 hours earlier, at 09:46:46 GMT of 20 March 2015 AD, there is a total solar eclipse—a symbol of the Mystical Marriage and of the end of the world. A total solar eclipse, preceding the beginning of an astrological year by less than 48 hours, has not happened since at least 1943 AD.

[edit] References

  1. Bethe, Hans A.; Brown, Gerald ♦ How a Supernova Explodes ♦ Scientific American, May 1985 ♦ "The collapse takes only milliseconds ..."
  2. Mészáros , Peter ♦ Gamma-ray bursts: the supernova connection Nature, 19 June 2003, pp. 809–810 ♦ "There is also a more elaborate offshoot of the supernova idea—the 'supranova'. Here, the core collapse is assumed to be a two-step affair: the first step produces a temporary neutron star and a supernova; in the second step, a few weeks or months later, the neutron star collapses into a black hole, producing a GRB."
  3. Cleveland, Cutler J.; Morris, Christopher G. ♦ Dictionary of Energy Elsewier, 2014, p. 66 ♦ "Boltzmann's constant: a value (k) relating the average energy of a molecule to its absolute temperature; k = 1.3803 × 1023 Joules per molecules degree Kelvin."
  4. 4.0 4.1 Shiga, David ♦ 'Monsters' blamed for extreme chaos in black holes New Scientist, 18 January 2008
  5. 5.0 5.1 Bethe, Hans A.; Brown, Gerald ♦ How a Supernova Explodes ♦ Scientific American, May 1985 ♦ "The entire evolution of the star is toward a condition of greater order, or lower entropy. It is easy to see why. In a hydrogen star, each nucleon can move willy-nilly along its own trajectory, but in an iron core groups of 56 nucleons are bound together and must move in lockstep. Initially the entropy per nucleon, expressed in units of Boltzmann's constant, is about 15; in the presupernova core it is less than 1."
  6. Bethe, Hans A.; Brown, Gerald ♦ How a Supernova Explodes ♦ Scientific American, May 1985 ♦ "Even if the compact remnant ultimately degenerates into a black hole, it begins as a hot neutron star. The central temperature immediately after the explosion is roughly 100 billion degrees Kelvin, which generates enough thermal pressure to support the star even if it is larger than 1.8 solar masses."
  7. Meyer, Bradley S. ♦ The r-, s-, and p-processes in nucleosynthesis "If the neutron star is more than a few hours old, it is cold (T ≤ 109 K) on a nuclear energy scale (e.g. Baym & Pethick 1979), implying that the entropy per baryon is quite low (≤ 0.5k)."
  8. As a system loses angular momentum (heat), it becomes more fragile. Angular momentum is rotationally centrifugal and provides buoyancy against the centripetal force of gravity. In a young system, low-frequency angular momentum (low-temperature heat) is stored in multiple "buoyancy bags", which are isolated from each other. In a mature (interindebted) system, high-frequency angular momentum (high-temperature heat) is generally much more scarce and is synergetically shared between interconnected "buoyancy bags", so that the system effectively has just a single "buoyancy bag". A ship with a single "buoyancy bag" will lose its buoyancy instantaneously, not gradually.
  9. GDPNow Federal Reserve Bank of Atlanta

[edit] External links

Personal tools